关于二战雷达的小知识- g, T) S: ^* f) p3 o6 Y8 [# R
$ G2 H |1 [ H- f+ v T& x) b* [
首先声明我不是专业搞雷达的,本文中的很多内容却是专业雷达操作人员描述过的。所以仅作为科普用,以纠正某些对雷达的错误理解。
- _4 T3 h, Y& A [+ j7 J6 r+ H8 K' V1 p: J( i
一般人对雷达性能数据中最感冒的就是其探测距离了。但在实际使用中,这个探测距离究竟怎么样是值得商榷的。假如只是为了发现天上来了东西,那么当然探测距离越大越好,但如果用在实战中,雷达报告的300公里外“移动物体”只是一团雨云,估计时间长了谁也受不了。因此就有了下一个要求:精度。- w( R0 _* @1 D K5 _2 J
7 s/ q) [! f, \: M4 v3 E: y( a V
这个“精度”不是一般人理解的,控制炮弹打过去,炮弹落在哪里的问题,而是雷达波在接触到目标反射回来的能量大小,目标越大,反射能量越大,目标越小,反射能量越小。当然雷达波自己没有这么聪明,它认不清自己撞上的是一艘大和还是一个小岛,所以这需要人来解决。解决的方法就是:波长。
5 e1 @7 r3 k5 r1 @& i6 t+ ~# E e, ]
根据我们在初中物理中学到的知识,波速等于波频乘以波长。可以肯定,波长越短,精度就越高,但同时波频就越大。但产生波频是需要空间——设备体积——和能量的——也就是电力,尤其在早期电子学不算发达的时候,这两个东西一直是很伤脑筋的。而早期军舰又一直空间不足,因此合理的设计雷达指标是有学问的,并不是“距离”越大越好,理论上说,应该是功率越大越好,因为大功率就意味着高频,更意味着精度。/ E' V; {2 h8 {
j5 s: X; Z1 |: k5 m" o
但大家看到了,我在上面说的,只是“理论上说”。为什么呢,很简单,大功率电器在使用中还意味着大发热量,以前我们看到有人玩电脑超频烧个CPU、主板什么的,同样的,对工作频率要求很高的雷达要是经常工作,肯定也会发生过热然后烧个磁控管、谐振器什么的。偏偏这些喜欢过热的部件又都是雷达的核心部件,所以你光把这些部件设计得很耐热还不行,就算在雷达室内工作的同志们光着屁股吹着空调忍下来了,显示系统也会出现毛病,比如在没有情况的方向出个情况,或者干脆报告所有方向都有情况。不要觉得这些很夸张,想想电脑过热后的死机。所以设计出的雷达只能在性能上搞折中,因此不要看着探测距离和功率就决定这个比那个好。
N! i+ s/ ^& I2 F/ A; X, V8 V4 s: I
这些问题解决完之后,别急,以上才是雷达的基本要求,还有呢。5 y# t0 D0 O7 F; G o$ N
- D. Q' E; Q; ]首先说对海探测。对海探测的要求比较少点,因为毕竟只是探测一个二维空间内的物体。而且,相信舰艇上的水兵谁也不希望自己在雷达上发现的“小舢板”到了跟前变成一条战列舰。但这只是雷达的最基本作用,随着精度的增加,雷达不仅能分辨目标的大小,还能比较准确的测算出目标的距离。这个时候,它的第二个作用就出现了:火控。
4 P" P( Q) X; W6 k/ R) r9 `8 g8 s7 ^) A- G+ @4 x! t7 b
火控雷达对精度的要求更高,因此它们的使用距离都不大。但在夜间,这个距离的缺陷就不明显了:眼力最好的日本海军最高夜间识别记录也不过3600米,而同期西方海军的能力普遍不超过1800米。而在华盛顿猛K雾岛那一次,交战距离达到了8000米左右。这就不难想象当日本人遭到炮击时的心情了:这叫什么概念?自己睁大了眼睛也没发现目标,就被人猛K一顿16英寸的老拳。6 M. A' `# o1 L4 L, J) b
8 E. h" H' d& C0 ~2 s
但是——多么讨厌的字眼——这并不是说具备这种能力的火控雷达就是好雷达。因此在雷达原理中,有一个讨厌的东西一直影响着雷达的精度:旁瓣效应。这个东西是雷达功率一大之后带来的副产品,通俗点说就是波频一高,雷达就出现一种类似近视眼的现象,看远点的东西都是带重影的。你搞探测还可以把这个忽略掉,但搞火控就不行了,有听说过好狙击手是近视眼的吗?一样的道理。
. v* _3 }0 [, g0 s& V
% R* @1 M0 k3 t# |" s; k$ e2 r4 h- q遗憾的是,这个旁瓣效应还是无法根除的,一直到现代,它都一直是骚扰雷达操作人员的一个老对手,唯一能做的,就是尽量减少它的误差。目标越小,它的影响越明显。想想现代对空导弹为什么都是在飞机旁边爆炸,就是这个原因。它的影响,我将在后面再次提到。
* c) s7 b( w% |4 }$ _6 t/ u
- D% h+ g# O" z9 k+ r! O话到这里,就不能不提为什么说英国雷达在二战中一直是水平最先进的了。从上面的文字里,我们知道了雷达使用中的一些现实困难,而且知道了这些困难导致的后果。这个时候再来提英国雷达的表现,就比较好理解这些看似不突出的性能了。* Q. X G; T# Q/ F
7 X6 F6 K3 C+ {. C5 u火控雷达的近视眼问题使得理论上说,当时的雷达指挥的火炮交战距离一般不超过12000米。但是,英国的279型就数次突破了这个限制:世界最远炮击命中记录是英国的“厌战”号,交战距离26000码以上,还是首发命中,时间是1940年;排第二的还是英国人,这次是“声望”号,交战距离22000码以上,时间还是1940年,挨打的是“沙恩霍斯特”和“格奈森诺”;排第三的仍然是英国人,换了“约克公爵”号,交战距离20000码,倒霉的还是“沙恩霍斯特”,而且这次还没能跑掉,时间是1943年底。
! ^3 j3 U% o. q% k' w5 x
h0 |0 j$ h: n比较比较,不比怎么较。美国方面火控雷达的最远射击记录是在苏里高海战,距离大约12000米,时间是1944年10月。
/ f" `7 ?/ v" E4 n
7 s, K# r' a9 Y所以说,英国雷达好不是浪得虚名的。4 T- j7 D8 s _' _- @/ w/ b' N2 i
' }' H: U; E$ P: x% \+ k* ^: r' X
下面该说说对空雷达了。) p L: D/ o# ^ U! B b% I
: \5 N+ E! t0 V& n' A3 I; w( r如果是对海雷达就已经这么折磨人的话,对空雷达简直就是要逼人上吊了。因为对空雷达不仅要探测方向和距离,还要探测高度,所以对空雷达一直都是两套天线,一套搞水平扫描,一套管垂直扫描。后者的麻烦更多,因为由于上文提到的旁瓣效应,高度误差随着扫描距离的增加是很吓人的:比如某德国雷达号称探测距离高达300公里,这个数字在当时的雷达里绝对排第一,但其高度误差也当仁不让地占了绝对第一——3000米。这要是准备打空战,是准备伏击别人呢,还是准备被别人伏击呢。所以有经验的德国飞行员一接到雷达转来的敌情之后,都会自觉地再飞高3000米——爬不上去的再说。$ Y7 A; F' O: C+ ], Y9 w5 [# y0 i7 K
9 u# V) k- l( Z+ e当然雷达的精度一直是在进步的,战争后期的一些对空雷达就没这么夸张了。精度自然也大大提高了,可以分辨来的是一群亨克尔还是一群梅塞施米特了。这时就有人想到用它来控制高射炮。但对空雷达控制高射炮毕竟还是存在现实困难的,当时的高射炮使用的都是定时引信,先算好距离和飞行时间,然后装定引信,开炮之后就祈祷雷达的近视眼问题不要那么严重。这中间影响效果的,除了雷达的近视眼问题以外,还有数据的传送和引信的装定时间延迟,所以,雷达控制高炮的效果还不是革命性的。真正的革命性效果得等到VT引信的出现。7 ~2 \" L9 m7 C [- ^
# @, f: O3 D2 `- W
VT引信简直就是飞机的灾难。高射炮手们终于不用自己装定引信了,只需要将炮弹发射出去,而炮弹何时爆炸,则由一直进行检测的雷达决定。在马里亚纳海战中,很多人都忽视了这一点:日本飞机在突击美国快速战列舰编队时遭到了致命打击——全部击落。这其中VT引信功不可没。但是,没有雷达,尤其是没有好雷达的话,光靠VT引信也是不可能发挥这种作用的。0 y% R$ f2 M9 M& u0 I6 _
h' S3 R6 w# L. Z* B# v8 A所以,雷达绝对是二战决定性兵器的代表做,没有它,也没有VT引信。只有真正了解了雷达的原理和使用情况,才会对雷达有个正确的认识。 |